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Branching rules for irreducible representations of E8 
into D8t 

G Bklanger 
Department of Physics, Johns Hopkins University, Baltimore, MD 21218, USA 

Received 21 April 1983 

Abstract. The branching rules for irreducible representations of Es into D8 are calculated 
using the knowledge of the Kronecker products for those two algebras. Tables of 
Kronecker products for both E8 and D8 algebras are also included. 

1. Introduction 

In the past few years, several models for grand unified theories based on exceptional 
Lie groups have been proposed (Gursey and Ramond 1976, Gursey and Sikivie 1976, 
Bars and Gunaydin 1980). It has thus become necessary to study different properties 
of these exceptional algebras. Wybourne and Bowick (1977) and later Wybourne 
(1 979) have developed a technique for calculating Kronecker products and branching 
rules for all exceptional algebras. However, the branching rules for the Ds subalgebra 
of Ea were not included. These are important, since the Es weights can be written 
in the same orthogonal basis as the Ds weights, and this basis has proved to be useful, 
in particular when one wants to study the non-regular subalgebras of exceptional Lie 
algebras (Feldman et a1 1982). Some of the branching rules have been given by King 
and Al-Qubanchi (1981) using the knowledge of weight multiplicities. Making use 
of the Kronecker products in E8 and Dg, we have found King's results and extended 
the table of Ea + Ds branching rules to include all Ea irreducible representations 
(irreps) of dimension less than 76 271 625; this includes all irreps of length s 18 and 
one of length 20. The length of a representation is defined below. Our method is 
discussed in § 2 together with some examples. Tables 1-4 list the Es and D8 irreducible 
representations and the Kronecker products which are required for the main results 
which are presented in table 5. 

2. E8 to Da branching rules 

A weight vector w '  of an irreducible representation (irrep) is equivalent to another 
weight w if it can be expressed as w'  =Sam, where S,  are elements of the Weyl group 
and a are the roots of the algebra (King and Al-Qubanchi 1981). In an orthogonal 
basis, the roots of D8 are 

* A i  * A i  i , j = l , 2  , . . . ,  8 i # j  

+ Supported in part by the National Science Foundation. 
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where A, AI = &,, The action of the Weyl reflections on an arbitrary weight w, where 
o = E, w,A,, is given by 

S.+A,U = w - ( w ,  - m , ) ( A i - A , )  (1) 

S A ~ + A , ~  = 0 - (U, f W ,  )(A f A, 1. (2) 

We can write the weights of E8 irreps in the basis used for Ds. The non-zero weights 
of the adjoint representation (i.e. the roots) are then 

* A ,  *A,  i , j = 1 , 2  , . . . ,  8 i # j  
( 3 )  

where a, = i 1 and the number of negative a, in the sum is odd. The Weyl reflections 
are given by (1) and (2) together with 

The direct sum of all Es irreps of length N branches to all? D8 irreps of length N 
plus some irreps of smaller length. Furthermore, each of these irreps of length N 
occurs only once in this sum. We may justify this by noting that all the weights of 
length N which are highest weights of D8 irreps are equivalent to the highest weight 
of some E8 irreps. Therefore these weights will have multiplicity one. 

+ In fact only  ‘even’ representations of D8 will appear, where we define an even (odd) irrep of D8 according 
to whether n l  +2n2. . . +8ns  is even (odd) where the Ds representation is (nl, n2,. . . , ns).  This follows 
from an examination of the basic weights of Es in the Ai  basis. The sum of the coefficients of each of these 
weights is always even. 
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Table 1. Es irreducible representations. 

Label U41 Dimension 

[I l l  2 248 
[I71 4 3 875 
[I21 6 30 380 
[211 8 27 000 
[lsl 8 147 250 
[11171 10 779 247 
1131 12 2 450 240 
r11121 14 4 096 000 
[I61 14 6 696 000 
[27l 16 4 881 384 
[11181 16 26 41 1 008 
[3i1 18 1763 125 
[I2171 18 76 271 625 
[21171 20 70 680 000 
1141 20 146 325 270 

Table 2. D8 irreducible representations. 

~~~ 

Label U41 Dimension Label -U41 Dimension 

0 
2 
2 
4 
4 
4 
6 
6 
6 
8 
8 
8 
8 
8 

10 
10 
10 
10 
10 
12 
12 
12 
12 
12 
14 
14 
14 
14 

I 
120 
128 
135 

1820 
1920 
7 020 
8 008 

13 312 
5 304 
6 435 

15 360 
56 320 
60 060 

8 925 
141 372 
141 440 
161 280 
162 162 
89 760 

176 800 
326 144 
670 208 
716 040 

87 040 
344 064 
465 920 
524 160 

14 
14 
14 
14 
16 
16 
16 
1.6 
16 
16 
16 
16 
16 
18 
18 
18 
18 
18 
18 
18 
18 
18 
20 
20 
20 
20 
20 

595 595 
850 850 

1 336 608 
2 036 736 

3 740 
439 296 
700 128 
771 120 
898 560 

3 294 720 
3 686 400 
4 084 080 
4 264 960 

129 675 
183 040 
255 255 

4 523 904 
4 972 500 
6 223 360 
6 683 040 

10 649 600 
11 197 440 

260 832 
4 426 240 
4 514 400 
5 940 480 
6 077 500 
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In general, if we can resolve the Kronecker products for both the algebra H and 
its subalgebra h, we can determine the branching rules H + h. In the case of E8, 
however, when we take the Kronecker products of representations for which the 
branching rules are known, it is usually true that we can deduce directly only the 
branching rules for pairs of additional Ea irreps. More information can be obtained 
by comparing the results from two different Kronecker products. To determine the 
branching rules completely, it is necessary to equate the dimensions of the Ea irrep 
with the sum of the dimensions of Ds irreps. The method is best illustrated by a few 
examples. From table 2, we see that if we require that the Da irreps into which [11]  

([17]) branches be of length < 2 ( s 4) we will get 

[111-+(12)+(18) ( 5 )  

[17]+ ( 1 1 1 7 )  +(14)+ (21). (6)  

In table 3 the Kronecker products for some Ea irreps are listed. These results have 
been taken from Wybourne (1979). Table 3(a )  gives the results of multiplying [11]  

by the irreps which label the columns. The entries in the table give the multiplicity 
of each irrep (labelled by the rows) into which the product decomposes. Table 3(b)  
gives the same information for [17]. A Kronecker square like [ l l ] X [ l l ]  can be 
separated into a symmetric and an antisymmetric part and this is indicated in the 
tables by an s or a subscript. For example, the Kronecker square of the lowest E8 
irrep is 

E1 11 x [Ill = m 1 1 +  E171 + [OlIs + ([121+ E11l)a.  (7) 

Using equation (3, we can also write 

D l 1  x v11= ((12) + (18)) x ((12) + (18)) 

= ((28) + 2 x (14)  + 2 x (0) + (22) + (21))s 

+ ((16) + 2 (12)  + ( 1 1 1 3 ) ) a +  2 (1118)+2 ( 1 1 1 7 )  + 2  (18)  (8) 

Table 3. Ea Kronecker products. 

(a  1 

1, 0 0 
1. 1 0 
1, 1 1 
1. 2 1 
1, 1 1 
1. 1 1 
1. 2 1 
1, 1 1 
0 1 1  
1, 1 0 
1, 0 0 

1 1  
0 0  
1 0  

1 
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Table 4. DE Kronecker products. 

(21) 1 . 0 1 0 0  1 0 0  0 0 0  0 0 1 
(14) 1 , 0 0 1 0  1 1 0  0 0 0  0 1 0  
(1117) 0 1 0 0 2  0 0 1  0 0 1  1 0  0 

(1113) 1 , 0 1 1 0  2 0 0  1 0 0  0 1 1  
(16) 0 0 0 1 0  0 1 0  0 1 0  0 1 0  
(1218) 0 1 0 0 1  0 0 2  0 0 1  1 0  0 

(22) 1s  0 0 0  1 0 0  1 0 0  0 0 1 
(27) 0 0 0  0 1 0  0 0 0  0 0 0 
(28) 0 0 0  0 1 0  0 1 0  0 0 0 
(2118) 0 0 1  0 0 1  0 0 2  0 0 0 
(1317) 0 0 1  0 0 1  0 0 0  2 0 0 
(1115) 0 1 0  1 1 0  0 0 0  0 2 0 

1 0 0  1 0 0  1 0 0  0 0 2 
1 0  1 0 0  1 0 0  0 1 0  

1 0  0 1  0 0 1  1 0  0 
0 0 1  0 0 0  1 0  0 
0 1 0  0 1 0  0 1 0  

1 0 0  0 0 0  0 0 0 
1 0 0  0 0 0  0 1 1  
0 0 0  0 0 0  1 0  0 
0 0 1  0 0 1  1 0  0 
0 1 0  0 0 0  0 1 0  

0 0 0 0 1  0 0 0 
1 0 1 0 0  0 0 1 

0 0 0 0  0 0 0 
1 0 0 0  0 0 0 

0 0 0  0 0 0 
0 1 0  0 0 0 
0 0 0 1 0  
0 0 0 1 0  
0 0 1 0 0  
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Table 4. (continued) 

1 0 
0 
1 
0 
0 
0 
0 
0 
0 

1 

1s 

1, 
0 

1s 
0 
0 

0 
0 
0 

1s 
0 
0 
0 
0 
0 

1, 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 

0 
0 

0 
1 
0 

1 
0 
0 

0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 

0 
1 

0 

0 
1 

0 
0 
1 

0 
0 
1 

0 
0 
0 
1 
0 
0 

0 
0 
1 
0 
0 

0 
0 
0 
0 
0 

0 

1 
0 

0 
1 
0 

2 
0 
0 

1 
0 
0 
0 
0 
0 

1 
1 
0 
0 
0 

0 
1 
0 
0 
0 

0 

0 
0 

0 
0 
0 

0 
1 
0 

0 
0 
0 
0 
0 
1 

C 
0 
0 
0 
1 

0 
0 
0 
0 
0 

0 

0 
0 

0 
0 
1 

0 
0 
1 

0 
0 
0 
1 
1 
0 

0 
0 
1 
0 
0 

0 
0 
0 
1 
0 

0 

0 
0 

1 
0 
0 

1 
0 
0 

1 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

0 

0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
1 
0 
0 
0 

0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
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Table 4. (continued) 

0 
0 
0 
0 
0 
0 
0 
0 
0 

1, 

1 0 
1 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
1 

0 0  0 0  
0 0  1 0  
0 0  0 0  
0 0  0 0  
0 0  0 0  
0 0  0 0  
1 0  0 0  

0 0 0  
0 0 0  

0 0 0  
0 0 0  
0 0 0  

0 1  0 
0 0 
1 0 

0 
0 
0 
0 

1 

~~ ~ 

( 0 )  1 , o  0 0 0 0 0 0 0 0 0 0 0 

(12) 1 , o  0 1 0  0 0 0 0 1 0  0 0 
(18) 0 0 1 0 0 0 1 0 1 0 0 0 0  

(21) 0 0 0 1 0 0 0 0 0 0 1 0 0  
(14) l , o  0 1 0  0 0 0 0 1 0  1 0  
(1 I 17) 0 1 1 0 0 1 0 1 1 0 0 0 1  
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Table 4. (continued) 

(1113) 0 0 0 1 0 0 0 0 0 1 1 1 0  
(16) 1 , o  0 1 0  0 0 0 0 1 0  1 0  
(1218) 0 0 1 0 1 0 1 1 1 0 0 0 1  

(22) 0 0 0 0 0 0 0 0 0 1 0 0 0  
(27) 0 0 0 1 0 0 0 0 0 0 0 1 0  
(28) 1 , o  0 0 0 0 0 0 0 1 0  0 0 
(2118) 1 0 0 0 0 0 1 0 0 0 0 1  
( 1 3 1 7 )  1 0 0 1 0 1 1 0 0 0 1  
( 1 1 1 5 )  0 1 0 0 0 0 0 1 1 1 0  

0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 1 0 1 0  
0 0 1 0 0 1 0 0 0 0 1  
1 0 0 0 1 0 1 0 0 0 1  

1 0 0 0 0 0 1 1 1 0  

0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 1 0 0  
0 1 0 0 1 0 0 0 1  
0 0 0 1 0 0 0 0 1  
0 0 0  0 1 0 1 0  

0 0 0  
0 0 0  
0 0 1  
1 0 0  

0 0  
0 0  
0 0  
0 0  
0 0  

0 0  
1 0  

0 
0 
0 
0 
0 
0 
0 
0 

0 0 0 0 0  
0 0 0 0 0  
1 0 0 0 0  

0 0 0 0  
0 0 1 0  
1 0 0 0  

1 0 0  
0 1 0  
0 0 1  

0 0 0  
0 0 0  
0 0 0  
1 0 0  

0 0  
0 0  
0 0  
0 0  
1 0  

1 

0 
1 
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1 , o  0 0 0  0 0  

1 , o  0 0 1 1 0  
0 1  0 0 0  0 1  

1 , o  0 0 1 0 0  
1 , o  1 1  1 1 0  
0 2  0 0 0  0 2  

1 , o  1 0  2 1 0  
1 , o  0 1 1  2 0 
0 2  0 0 0  0 3  

1 , o  1 0  1 0 0  
1 , o  0 0 0  1 0  
1 , o  0 1 0  1 0  
0 1  0 0 0  0 1  
0 2  0 0 0  0 2  
1 , o  1 1  2 1 0  

0 0  0 0 1  0 0  
1 , o  1 0  2 1 0  
0 1  0 0 0  0 2  
0 1  0 0 0  0 2  
1 . 0  0 1 1  2 0 

1 , o  0 0  1 0 0  
0 0  1 0 1  0 0  
0 1  0 0 0  0 1  
0 1  0 0 0  0 2  
1 , o  1 1  1 1 0  

0 0  0 9 0  0 0  
0 0  1 0 1  0 0  
0 0  0 0 0  0 1  
0 0  0 0 0  0 1  
0 0  0 0 0  1 0  
0 0  0 1 0  1 0  
0 0  0 0 1  0 0  
1 , o  0 0 1 1 0  
0 1  0 0 0  0 1  

1 , 0 0 0  0 0  

2 , 0 0 0  0 1  
0 0 0 1  1 0  

1 , 0 0 0  0 1  
2 , 0 0 0  0 2  
0 1 1 2  2 0  

2 . 0 0 0  0 3  
2 , 0 0 0  0 2  
0 1 1 3  2 0  

1 , 0 0 0  0 1  
1 , 0 0 0  0 1  
1 , 0 0 0  0 1  
0 1 1 2  1 0  
0 1 1 2  2 0  
2a,s 0 0 0 0 3 

1 , 0 0 0  0 1  
1 , 0 0 0  0 2  
0 2 0 3  1 0  
0 0 1 1  2 0  
2a,s 0 0 0 0 3 

0 0 0 0  0 1  
1 , 0 0 0  0 1  
0 0 1 0  2 0  
0 1 1 2  1 0  
1 , 0 0 0  0 2  

0 0 0 1  0 0  
0 0 0 0  0 1  
0 0 1 0  1 0  
0 1 0 1  0 0  
1 , 0 0 0  0 1  
0 0 0 0  0 1  
1 , 0 0 0  0 1  
0 0 0 0  0 1  
0 0 0 1  1 0  
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Table 4. (continued) 

0 0 0  0 0  
0 0 0  0 0  
0 0 0  0 0  
0 0 0  0 0  
0 0 0  0 0  
0 0 0  0 0  
0 0 0  0 1  
1 0 1  0 0  
0 1 0  1 0  
0 0 0  0 1  

0 0 0  0 0  
0 0 0  0 0  
0 0 0  0 0  
0 0 0  0 0  
0 0 1  0 0  
0 0  0 0  
0 0  1 0  
0 0  0 
0 0  1 

0 0  
0 0  
1 0  

I 
I 

0 0 0 0  0 0  
0 0 1 0  1 0  
1 , 0 0 0  0 0  

0 0 0  0 1  
0 0 0  0 0  
1 0 1  0 0  
1 0 1  0 0  
0 0 0  0 1  
0 0 0  0 1  
0 1 0  1 0  

0 0 0  0 0  
0 0 0  0 0  
0 0 0  0 0  
0 0 1  0 0  
0 0  0 0  
0 0  1 0  
0 0  0 
0 0  1 
0 0  

0 0  
1 0  

0 
1 

where the D8 Kronecker products are given in table 4. These were calculated using 
Young's tableau (see Fischler 1 9 8 1 ) .  Table 4 is arranged in the same way as table 3 
and each section of the table corresponds to a product by the irrep indicated in the 
upper left-hand corner. After subtracting the irreps belonging to [17], [O] and [ lJ ,  
we find 

[211 +[I21 + ( 2 8 ) s +  ( 2 2 ) s +  2 ( 1 2 1 8 )  + ( 1 1 1 3 ) a +  (1h)a  + ( 1  1 1 7 )  + ( 1 4 ) ~ ~  ( 1 8 )  + ( 1 2 ) a +  (0)s. 
(9) 

From the symmetry property and using the rule that the sum of Es irreps of length 
N branches into all D8 irreps of the same length, we get 

( 1 0 )  

(1 1 )  
Using the law of dimensions, the branching rule is immediately completed. The result 
is found in table 5 ,  where the branching multiplicities of the Ds irreps labelling the 
rows are the entries of a given column labelled by an Es irrep. 

In order to illustrate the added complexities of obtaining branching rules for 
higher-dimensional irreps, we give a second example. If we assume that we have 
found the branching rules for all irreps of length less than 14 and also for [1112] of 
length 14, from table 3 ( 6 )  we see that the Kronecker product [17] x[17] contains only 
two irreps for which the branching rules are unknown. These are [27] and [16]. In 

D1l + 

U 2 1 +  ( 1 2 1 8 ) + ( l l 1 3 ! + ( 1 6 ) +  ( W + .  . . . 
+ ( I 2  I s )  + ( 2 , )  + (14 )  + (0) + . . . 
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All the irreps of length 16 in equation (12) or (13) must belong tu [27] or [1118] 
respectively. All those of length 14 which are not in [1112] appear only once in [16] 
and the rest are in [27] and [I l ls] .  Furthermore, all symmetric irreps are in [27] and 
the antisymmetric ones in [16]. Also, every irrep which appears in (12) but not in 
(13) must belong to [27]. Also each irrep which is in (13) but not in (12) must be in 
[Ills]. Therefore 

+ (2 116) + (1 11 7 18) + (2 1 1 2 )  + ( 1 2 1 4 )  + (11 1 3 )  + ( 1 2 )  + * * * (15) 

[l 181 + ( 1 2 1 3  17) + (2128) + G718) + (2, I Z l d  + ( 1 3  l7l8) + (1 I 1 s18) + (1 L L j  + (1 l4 17) 

+ ( 1 2 2 7 ) +  (1 1 1 2 1 3 )  + (1315)  + (21 16)  + 2  (1 1 1 3 1 8 ) + ( 1 5 1 7 ) +  (1216)  

+ (23) + 2 x (1 11718)  + (1 1 1 2  1 7 )  + (21 1 2 )  ( 1 2 1 4 )  

+ 2 x (2118) + 2  x (1317) + (2,) + (1 1 1 5 )  +.2 x (1113) 

+(16)+2x(1117)+(21)+. . . . (16) 

The sums of the dimensions of the irreps missing in (14), (15) and (16) are respectively 
554712 for [27] and [1118] and 1469572 for [16]. By matching those dimensions with 
the dimensions of the irreps remaining in (12) and (13), we can find a unique solution 
for the branching rule. The additional branching rules listed in table 5 are derived 
similarly. This table which gives the branching rules of 14 irrep of E8 increases by 5 
the number given by King and Al-Qubanchi (1981). Using the techniques outlined 
above, one can enlarge the table. It is the tabulation of the D8 Kronecker products 
that presents the greatest difficulty. 
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Table 5. Branching rules for E8 + D8. 

0 0 0 1 0 0  0 0  0 1 0  0 0  0 

1 0 1 0 0 1  0 1  1 0 0  1 1  0 
1 0 0 1 0 1  0 1  0 1 0  1 1  0 

1 0 0 1 0  1 0  0 0 1  0 0  1 
1 0 1 0 1  1 1  0 1 1  0 1  2 
1 1 0 1 1  1 1  1 0 2  0 1  2 

1 0 1 1  1 1  1 0 2  0 2  1 
1 0 0 1  0 1  1 0 1  1 2  1 
1 1 0 1  1 2  1 1 1  1 3  2 

1 0 0  1 1  0 1 0  0 1  1 
0 1 0  1 0  0 0 1  0 0  0 
1 0 0  0 1  0 1 0  1 1  2 
0 1 1  1 0  1 0 2  0 1  1 
0 1 1  1 1  1 0 2  0 2  2 
0 1 1  1 1  1 1 2  0 2  2 

1 0 0  1 0 1  0 1  0 
1 0 1  1 0 1  1 3  1 
1 1 1  1 1 2  0 3  1 
1 0 1  0 1 1  1 2  2 
1 1 1  1 0 2  0 2  2 

1 0  0 0 1  0 0  1 
1 0  1 1 1  0 1  1 
1 0  1 0 1  0 1  1 
1 1  1 0 2  0 2  2 
1 1  0 1 1  0 2  2 

0 1 1 0 0 1  0 
1 0 0 1  0 1  1 
1 0 0 0  0 1  1 
1 0 0 0  1 1  1 
0 1 0 1  0 1  0 
1 0 0 0  1 1  1 
0 1 0 1  0 2  0 
0 1 0 1  0 1  1 
0 1 1 1  0 2  1 

1 0  0 0  0 
0 1  0 0  0 
1 0  0 1  0 
0 1  0 0  1 
1 0  0 0  1 
0 1  0 1  1 
0 1  0 1  1 
0 1  0 1  1 
0 1  0 1  1 
0 1  0 1  1 
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Table 5. (continued) 

1 0  0 
1 0  0 
0 1  0 
0 1  0 
0 1  0 
0 1  0 
0 1  0 
0 1  1 
0 1  1 

1 
1 
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