Branching rules for irreducible representations of E_{8} into D_{8}

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 163421
(http://iopscience.iop.org/0305-4470/16/15/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 16:51

Please note that terms and conditions apply.

Branching rules for irreducible representations of $\mathbf{E}_{\mathbf{8}}$ into $\mathbf{D}_{\mathbf{8}}{ }^{\dagger}$

G Bélanger
Department of Physics, Johns Hopkins University, Baltimore, MD 21218, USA

Received 21 April 1983

Abstract

The branching rules for irreducible representations of E_{8} into D_{8} are calculated using the knowledge of the Kronecker products for those two algebras. Tables of Kronecker products for both E_{8} and D_{8} algebras are also included.

1. Introduction

In the past few years, several models for grand unified theories based on exceptional Lie groups have been proposed (Gürsey and Ramond 1976, Gürsey and Sikivie 1976, Bars and Günaydin 1980). It has thus become necessary to study different properties of these exceptional algebras. Wybourne and Bowick (1977) and later Wybourne (1979) have developed a technique for calculating Kronecker products and branching rules for all exceptional algebras. However, the branching rules for the D_{8} subalgebra of E_{8} were not included. These are important, since the E_{8} weights can be written in the same orthogonal basis as the D_{8} weights, and this basis has proved to be useful, in particular when one wants to study the non-regular subalgebras of exceptional Lie algebras (Feldman et al 1982). Some of the branching rules have been given by King and Al-Qubanchi (1981) using the knowledge of weight multiplicities. Making use of the Kronecker products in E_{8} and D_{8}, we have found King's results and extended the table of $\mathrm{E}_{8} \rightarrow \mathrm{D}_{8}$ branching rules to include all E_{8} irreducible representations (irreps) of dimension less than 76271625 ; this includes all irreps of length $\leqslant 18$ and one of length 20. The length of a representation is defined below. Our method is discussed in $\S 2$ together with some examples. Tables $1-4$ list the E_{8} and D_{8} irreducible representations and the Kronecker products which are required for the main results which are presented in table 5.

2. E_{8} to D_{8} branching rules

A weight vector ω^{\prime} of an irreducible representation (irrep) is equivalent to another weight $\boldsymbol{\omega}$ if it can be expressed as $\boldsymbol{\omega}^{\prime}=S_{\alpha} \boldsymbol{\omega}$, where S_{α} are elements of the Weyl group and $\boldsymbol{\alpha}$ are the roots of the algebra (King and Al-Qubanchi 1981). In an orthogonal basis, the roots of D_{8} are

$$
\pm \boldsymbol{\lambda}_{i} \pm \boldsymbol{\lambda}_{j} \quad i, j=1,2, \ldots, 8 \quad i \neq j
$$

[^0]where $\boldsymbol{\lambda}_{i} \cdot \boldsymbol{\lambda}_{\boldsymbol{j}}=\delta_{i j}$. The action of the Weyl reflections on an arbitrary weight $\boldsymbol{\omega}$, where $\omega=\boldsymbol{\Sigma}_{i} \omega_{i} \boldsymbol{\lambda}_{i}$, is given by
\[

$$
\begin{align*}
& S_{\boldsymbol{\lambda}_{i}-\boldsymbol{\lambda}_{1}} \boldsymbol{\omega}=\boldsymbol{\omega}-\left(\omega_{i}-\omega_{j}\right)\left(\boldsymbol{\lambda}_{i}-\boldsymbol{\lambda}_{j}\right) \tag{1}\\
& \boldsymbol{S}_{\boldsymbol{\lambda}_{i}+\boldsymbol{\lambda}_{1}} \boldsymbol{\omega}=\boldsymbol{\omega}-\left(\omega_{i}+\omega_{j}\right)\left(\boldsymbol{\lambda}_{i}+\boldsymbol{\lambda}_{j}\right) . \tag{2}
\end{align*}
$$
\]

We can write the weights of E_{8} irreps in the basis used for D_{8}. The non-zero weights of the adjoint representation (i.e. the roots) are then

$$
\begin{array}{ll}
\pm \boldsymbol{\lambda}_{i} \pm \boldsymbol{\lambda}_{i} & i, j=1,2, \ldots, 8 \\
\frac{1}{2} \sum_{j=1}^{8} \sigma_{i} \boldsymbol{\lambda}_{j} & \tag{3}
\end{array}
$$

where $\sigma_{j}= \pm 1$ and the number of negative σ_{j} in the sum is odd. The Weyl reflections are given by (1) and (2) together with

$$
\begin{equation*}
S_{\frac{1}{j}, \sigma_{j}, \lambda} \omega=\boldsymbol{\omega}-\left(\frac{1}{2} \sum_{j=1}^{8} \sigma_{j} \omega_{j}\right)\left(\frac{1}{2} \sum_{k=1}^{8} \sigma_{k} \omega_{k}\right) . \tag{4}
\end{equation*}
$$

Note that two equivalent weights have the same length.
We label the irreps by a set of eight integers $\left(a_{1}, \ldots, a_{8}\right)$ as given in McKay and Patera (1981). To simplify the notation, we shall write only the non-zero a 's with a subscript to indicate their position. For example, $(20010000)=\left(2_{1} 1_{4}\right)$. Also, to avoid confusion, the E_{8} irreps will be enclosed in square brackets, [], and the D_{8} irreps in round ones, ().

The length of a representation $L[\phi]$ is defined as the square of the length of the highest weight. In the orthonormal basis it is simple to find the length of any representation. If $\boldsymbol{\alpha}_{i}$ are simple roots of E_{8} and are expressed in the $\boldsymbol{\lambda}_{i}$ basis as in figure 1 , then the highest weights π_{i} of the basic irreps [1_{i}] satisfy the relation $\left(2 \pi_{i} \cdot \boldsymbol{\alpha}_{i}\right) /\left(\boldsymbol{\alpha}_{i}^{2}\right)=\delta_{i j}$. For example, we find $\pi_{2}=\boldsymbol{\lambda}_{1}+\boldsymbol{\lambda}_{2}-2 \boldsymbol{\lambda}_{8}$ and therefore $L\left[1_{2}\right]=6$. The lengths and dimensions of E_{8} and D_{8} irreps required in this study are given in tables 1 and 2 (see also Freudenthal 1954, 1956). If we apply the transformation $S_{\boldsymbol{\alpha}}$ on the respective maximal weights of the E_{8} irreps of length N, we obtain all the D_{8} weights of length N. We will therefore use the following rule.

Figure 1. Dynkin diagram for E_{8}. The simple roots $\boldsymbol{\alpha}_{i}$ are expressed in the $\boldsymbol{\lambda}_{i}$ basis.
The direct sum of all E_{8} irreps of length N branches to all $\dagger \mathrm{D}_{8}$ irreps of length N plus some irreps of smaller length. Furthermore, each of these irreps of length N occurs only once in this sum. We may justify this by noting that all the weights of length N which are highest weights of D_{8} irreps are equivalent to the highest weight of some E_{8} irreps. Therefore these weights will have multiplicity one.

[^1]Table 1. E_{8} irreducible representations.

Label	$L[\phi]$	Dimension
$\left[1_{1}\right]$	2	248
$\left[1_{7}\right]$	4	3875
$\left[1_{2}\right]$	6	30380
$\left[2_{1}\right]$	8	27000
$\left[1_{8}\right]$	8	147250
$\left[1_{1} 1_{7}\right]$	10	779247
$\left[1_{3}\right]$	12	2450240
$\left[1_{1} 1_{2}\right]$	14	4096000
$\left[1_{6}\right]$	14	6696000
$\left[2_{7}\right]$	16	4881384
$\left[1_{1} 1_{8}\right]$	16	26411008
$\left[3_{1}\right]$	18	1763125
$\left[1_{2} 1_{7}\right]$	18	76271625
$\left[2_{1} 1_{7}\right]$	20	70680000
$\left[1_{4}\right]$	20	146325270

Table 2. D_{8} irreducible representations.

Label	$L[\phi]$	Dimension	Label	$L[\phi]$	Dimension
(0)	0	1	(1227)	14	595595
$\left(1_{2}\right)$	2	120	$\left(21_{6}\right)$	14	850850
$\left(1_{8}\right)$	2	128	(1315)	14	1336608
(21)	4	135	($1_{1} 1_{4} 1_{7}$)	14	2036736
(14)	4	1820	$\left(4_{1}\right)$	16	3740
$\left(1_{1} 17\right)$	4	1920	$(2,18)^{\text {) }}$	16	439296
$\left(1_{1} 1_{3}\right)$	6	7020	$(2,27)$	16	700128
(16)	6	8008	(24)	1.6	771120
$\left(1_{2} 1_{8}\right)$	6	13312	$\left(2_{1} 1_{2} 1_{8}\right)$	16	898560
$(2$,	8	5304	$\left(1_{2} 1_{3} 1_{7}\right)$	16	3294720
(27)	8	6435	$\left(1_{1} 1_{2} 1_{5}\right)$	16	3686400
$\left(2,1_{8}\right)$	8	15360	$\left(1,171_{8}\right)$	16	4084080
$(1,17)$	8	56320	$\left(11_{5} 1_{8}\right)$	16	4264960
$\left(1_{1} 1_{5}\right)$	8	60060	$\left(3_{2}\right)$	18	129675
$(2,12)$	10	8925	(38)	18	183040
$\left(1_{2} 1_{4}\right)$	10	141372	(311_{3})	18	255255
$\left(1_{1} 1_{2} 1_{7}\right)$	10	141440	$\left(21_{3} 1_{7}\right)$	18	4523904
$\left(1_{4} 1_{8}\right)$	10	161280	$\left(11_{3} 1_{4}\right)$	18	4972500
$\left(1_{1} 1,18\right)$	10	162162	$\left(1_{1} 1_{6} 1_{7}\right)$	18	6223360
(23)	12	89760	($14_{4} 1{ }_{6}$)	18	6683040
$(2,14)$	12	176800	$(1,1,1,18)$	18	10649600
(1517)	12	326144	$\left(1_{2} 1_{4} 1_{8}\right)$	18	11197440
$\left(1_{1} 1_{3} 1_{8}\right)$	12	670208	$\left(22_{2}\right)$	20	260832
($1_{2} 1_{6}$)	12	716040	$\left(1_{1} 2_{2} 1_{7}\right)$	20	4426240
(3,17)	14	87040	$\left(21_{4}\right)$	20	4514400
$\left(1_{1} 1_{2} 1_{3}\right)$	14	344064	$\left(1_{1} 1_{7} 2_{8}\right)$	20	5940480
$\left(1_{6} 1_{8}\right)$	14	465920	$\left(12^{2} 8\right)$	20	6077500
(2, 1_{8})	14	524160			

In general, if we can resolve the Kronecker products for both the algebra H and its subalgebra h, we can determine the branching rules $H \rightarrow h$. In the case of E_{8}, however, when we take the Kronecker products of representations for which the branching rules are known, it is usually true that we can deduce directly only the branching rules for pairs of additional E_{8} irreps. More information can be obtained by comparing the results from two different Kronecker products. To determine the branching rules completely, it is necessary to equate the dimensions of the E_{8} irrep with the sum of the dimensions of D_{8} irreps. The method is best illustrated by a few examples. From table 2, we see that if we require that the D_{8} irreps into which [1 1_{1}] ($[17]$) branches be of length $\leqslant 2(\leqslant 4)$ we will get

$$
\begin{align*}
& {\left[1_{1}\right] \rightarrow\left(1_{2}\right)+\left(1_{8}\right)} \tag{5}\\
& {\left[1_{7}\right] \rightarrow\left(1_{1} 1_{7}\right)+\left(1_{4}\right)+\left(2_{1}\right) .} \tag{6}
\end{align*}
$$

In table 3 the Kronecker products for some E_{8} irreps are listed. These results have been taken from Wybourne (1979). Table $3(a)$ gives the results of multiplying [11] by the irreps which label the columns. The entries in the table give the multiplicity of each irrep (labelled by the rows) into which the product decomposes. Table 3(b) gives the same information for [17]. A Kronecker square like [$\left.1_{1}\right] \times\left[1_{1}\right]$ can be separated into a symmetric and an antisymmetric part and this is indicated in the tables by an s or a subscript. For example, the Kronecker square of the lowest E_{8} irrep is

$$
\begin{equation*}
\left[1_{1}\right] \times\left[1_{1}\right]=\left\{\left[2_{1}\right]+\left[1_{7}\right]+[0]\right\}_{\mathrm{s}}+\left(\left[1_{2}\right]+\left[1_{1}\right]\right)_{\mathrm{a}} . \tag{7}
\end{equation*}
$$

Using equation (5), we can also write

$$
\begin{align*}
{\left[1_{1}\right] \times\left[1_{1}\right]=} & \left\{\left(1_{2}\right)+\left(1_{8}\right)\right\} \times\left\{\left(1_{2}\right)+\left(1_{8}\right)\right\} \\
= & \left\{\left(2_{8}\right)+2 \times\left(1_{4}\right)+2 \times(0)+\left(2_{2}\right)+\left(2_{1}\right)\right\}_{\mathrm{s}} \\
& +\left(\left(1_{6}\right)+2 \times\left(1_{2}\right)+\left(1_{1} 1_{3}\right)\right)_{\mathrm{a}}+2 \times\left(1_{1} 1_{8}\right)+2 \times\left(1_{1} 1_{7}\right)+2 \times\left(1_{8}\right) \tag{8}
\end{align*}
$$

Table 3. E_{8} Kronecker products.
(a) (b)

	$\left[1_{1}\right] \times\left[1_{1}\right]$	[17]	[12]	[21]	[18]	$\left[1_{7}\right] \times\left[1_{7}\right]$	[12]	[21]
[0]	$1{ }_{\text {s }}$	0	0	0	0	$1{ }_{\text {s }}$	0	0
[1,]	$1{ }_{\text {a }}$	1	1	1	0	$1{ }_{\text {a }}$	1	0
[17]	1 s		1	0	1	$1{ }_{\text {s }}$	1	1
[12]	$1{ }_{\text {a }}$	1	1	1	1	$1{ }_{\text {a }}$	2	1
[21]	1 s		1	1	0	1 s	1	1
[18]		1	1	0	1	1 s	1	1
[$1_{1} 17$]		1	1	1	1	$1{ }_{\text {a }}$	2	1
[13]			1	0	1	$1{ }_{\text {s }}$	1	1
$\left[1_{1} 1_{2}\right]$			1	1	0	0	1	1
[16]				0	1	$1{ }_{\text {a }}$	1	,
[27]				0	0	$1{ }_{\text {s }}$	0	0
$[1,18]$				0	1		1	
[31]				-			0	0
[$\left.1_{2} 17{ }_{7}\right]$							1	0
[2117$]$,

Table 4. D_{8} Kronecker products.

	$\left(1_{2}\right) \times\left(1_{2}\right)$		$\left(2{ }_{1}\right)$	$\left(1_{4}\right)$	$\left(1_{1} 1_{7}\right)$	$\left(1_{1} 1_{3}\right)$		$\left(1_{2} 1_{8}\right)$		(28)	$\left(2_{1} 1_{8}\right)$	$\left(1_{3} 1_{7}\right)$	(1, 1_{5})	$\left(2_{1} 1_{2}\right)$
(0)	1 s	0	0	0	0	0	0	0	0	0	0	0	0	0
$\left(1_{2}\right)$	$1{ }_{\text {a }}$	0	1	1	0	1	0	0	1	0	0	0	0	0
(18)	0	1	0	0	1	0	0	1	0	0	0	0	0	0
$\left(2_{1}\right)$	1 s	0	1	0	0	1	0	0	0	0	0	0	0	1
$\left(1_{4}\right)$	1 s	0	0	1	0	1	1	0	0	0	0	0	1	0
$\left(1_{1} 1_{7}\right)$	0	1	0	0	2	0	0	1	0	0	1	1	0	0
$\left(1_{1} 1_{3}\right)$	$1{ }_{\text {a }}$	0	1	1	0	2	0	0	1	0	0	0	1	1
(16)	0	0	0	1	0	0	1	0	0	1	0	0	1	0
$\left(1_{2} 1_{8}\right)$	0	1	0	0	1	0	0	2	0	0	1	1	0	0
$\left(2_{2}\right)$	1 s		0	0	0	1	0	0	1	0	0	0	0	1
(27)			0	0	0	0	1	0	0	0	0	0	0	0
(28)			0	0	0	0	1	0	0	1	0	0	0	0
$\left(21_{8}\right)$			0	0	1	0	0	1	0	0	2	0	0	0
$\left(1_{3} 17\right)$			0	0	1	0	0	1	0	0	0	2	0	0
($1_{1} 15$)			0	1	0	1	1	0	0	0	0	0	2	0
(211_{2})			1	0	0	1	0	0	1	0	0	0	0	2
$\left(1_{2} 1_{4}\right)$				1	0	1	0	0	1	0	0	0	1	0
$\left(1_{1} 1_{2} 1_{7}\right)$					1	0	0	1	0	0	1	1	0	0
$\left(1_{4} 1_{8}\right)$						0	0	1	0	0	0	1	0	0
$\left(1_{1} 1_{7} 1_{8}\right)$						0	1	0	0	1	0	0	1	0
$\left(2_{3}\right)$						1	0	0	0	0	0	0	0	0
$(2,14)$						1	0	0	0	0	0	0	1	1
(1, $17{ }_{7}$)						0	0	0	0	0	0	1	0	0
$\left(1_{1} 1_{3} 1_{8}\right.$)						0	0	1	0	0	1	1	0	0
$\left(1_{2} 1_{6}\right)$						0	1	0	0	0	0	0	1	0
$(3,17)$						0		0	0	0	1	0	0	0
$\left(1_{1} 1_{2} 1_{3}\right)$						1		0	1	0	0	0	0	1
($1_{6} 1_{8}$)								0	0	0	0	0	0	0
$\left(21_{8}\right.$)								1	0	0	0	0	0	0
($1_{2} 2_{7}$)									0	0	0	0	0	0
($1_{2} 2_{8}$)									0	1	0	0	0	0
(211_{6})									0		0	0	1	0
($1_{3} 1_{5}$)									0		0	0	1	0
$\left(1_{1} 1_{4} 17\right)$									0		0	1	0	0
(4)									0		0	0	0	1
(2718)									0		0	0	0	0
(2127)									0		0	0	0	0
$(2,28)$									0		0	0	0	0
(24)									0		0	0	0	0
($2_{1} 1_{2} 1_{8}$)									0		1	0	0	0
$\left(1_{2} 1_{3} 17\right)$									0			1	0	0
$\left(1_{1} 1_{2} 1_{5}\right)$									0				1	0
($1_{3} 1{ }_{7} 1_{8}$)									0					0
($1_{1} 1_{5} 1_{8}$)									0					0

Table 4. (continued)

	$\left(2_{1}\right) \times$	(2)	$\left(1_{4}\right)$	$\left(1_{1} 1_{7}\right)$	$\left(1_{1} 1_{3}\right)$	(16)	$\left(1_{2} 1_{8}\right)$	(22)	(28)
(0)		$1_{\text {s }}$	0	0	0	0	0	0	0
$\left(1_{2}\right)$		1_{a}	0	0	1	0	0	0	0
(18)		0	0	1	0	0	0	0	0
$\left(2_{1}\right)$		1 s	0	0	0	0	0	1	0
(14)		0	1	0	1	0	0	0	0
$\left(11_{7}\right)$		0	0	1	0	0	1	0	0
$\left(1_{1} 1_{3}\right)$		0	1	0	2	0	0	1	0
(16)		0	0	0	0	1	0	0	0
$\left(1_{2} 1_{8}\right)$		0	0	1	0	0	1	0	0
$\left(2_{2}\right)$		$1_{\text {s }}$	0	0	1	0	0	1	0
(27)		0	0	0	0	0	0	0	0
(28)		0	0	0	0	0	0	0	1
(211_{8})		0	0	1	0	0	1	0	0
$\left(1_{3} 17{ }_{7}\right)$		0	0	0	0	0	1	0	0
$\left(1_{1} 1_{5}\right)$		0	1	0	0	1	0	0	0
($2_{1} 1_{2}$)		$1{ }_{\text {a }}$	0	0	1	0	0	1	0
($1214{ }_{4}$)		0	0	0	1	0	0	0	0
$\left(1_{1} 1_{2} 1_{7}\right)$		0	0	1	0	0	1	0	0
($1_{4} 18$)		0	0	0	0	0	0	0	0
$\left(11_{7} 1_{8}\right)$		0	0	0	0	1	0	0	1
(23)		0	0	0	0	0	0	1	0
$\left(21_{4}\right)$		0	1	0	1	0	0	0	0
($1517{ }^{\text {l }}$)		0		0	0	0	0	0	0
$\left(1_{1} 1_{3} 1_{8}\right)$		0		0	0	0	1	0	0
($1_{2} 1_{6}$)		0		0	0	0	0	0	0

Table 4. (continued)

	$(2,1) \times$	$(2)^{\prime}$	(14)	$(1,17)$	$\left(1_{1} 1_{3}\right)$	(16)	$\left(1_{2} 1_{8}\right)$	(2)	(28)
(3, 17)		0		1	0	0	0	0	0
$\left(1,1,1_{3}\right)$		0			1	0	0	1	0
$\left(11_{6} 1_{8}\right)$		0			0	0	0	0	0
$(2,18)$		0			0	0	0	0	0
$\left(1_{2} 27\right)$		0			0	0	0	0	0
$\left(1_{2} 28\right)$		0			0	0	0	0	0
$(2,16)$		0			0	1	0	0	0
$\left(1_{3} 15\right)$		0			0		0	0	0
$\left(1_{1} 1_{4} 1_{7}\right)$		0			O		0	0	0
(4,)		1 s			0		0	0	0
$(2,18)$					0		0	0	
(2127)					0		0	0	
$(2,28)$					0		0	0	1
(24)					0		0	0	
$\left(2,1,1_{8}\right)$					0		1	0	
$\left(1_{2} 1_{3} 1_{7}\right)$					0			0	
$(1,1215)$					0			0	
$\left(1_{3} 1,18\right)$					0			0	
$\left(1_{1} 1_{5} 1_{8}\right)$					0			0	
$\left(3_{2}\right)$					0			0	
(38)					0			0	
$\left(3,11_{3}\right)$					1			0	
$(2,1317)$								0	
$(1,1,14)$								0	
$\left(1_{1} 161_{7}\right)$								0	
$\left(1_{4} 1_{6}\right)$								0	
$\left(1,1_{2} 1_{7} 1_{8}\right)$								0	
$\left(1_{2} 1_{4} 1_{8}\right)$								0	
$\left(1_{1} 2_{2} 1_{7}\right) \quad 1$									
$\left(2,1_{4}\right)$									
$\left(11_{1} 2_{8}\right)$									
($14_{4} 2_{8}$)									

	$\left(1_{8}\right) \times\left(1_{8}\right)$	(21)	(14)	$\left(1_{1} 1_{7}\right)\left(2_{2}\right)$		(27)	(28)	$\left(1_{1} 1_{3}\right)\left(1_{6}\right)$		$\left(1_{2} 1_{8}\right)\left(2_{1} 1_{8}\right)\left(1_{3} 1_{7}\right)\left(1_{1} 1_{5}\right)$			
(0)	1_{a}	0	0	0	0	0	0	0	0	0	0	0	0
$\left(1_{2}\right)$	1_{a}	0	0	1	0	0	0	0	0	1	0	0	0
(18)	0	0	1	0	0	0	1	0	1	0	0	0	0
$\left(2_{1}\right)$	0	0	0	1	0	0	0	0	0	0	1	0	0
(14)	$1_{\text {s }}$	0	0	1	0	0	0	0	0	1	0	1	0
$\left(1_{1} 1_{7}\right)$	0	1	1	0	0	1	0	1	1	0	0	0	1

Table 4. (continued)

	$\left(1_{8}\right) \times\left(1_{8}\right)$	(21)	$\left(1_{4}\right)$	$\left(1_{1} 1_{7}\right)\left(2_{2}\right)$		(27)	(28)	$\left(1_{1} 1_{3}\right)\left(1_{6}\right)$		$\left(1_{2} 1_{8}\right)\left(2_{1} 1_{8}\right)\left(1_{3} 1_{7}\right)\left(1_{1} 1_{5}\right)$			
$\left(1_{1} 1_{3}\right)$	0	0	0	1	0	0	0	0	0	1	1	1	0
(16)	1 a	0	0	1	0	0	0	0	0	1	0	1	0
$\left(1_{2} 1_{8}\right)$	0	0	1	0	1	0	1	1	1	0	0	0	1
$\left(2{ }_{2}\right)$	0	0	0	0	0	0	0	0	0	1	0	0	0
(27)	0	0	0	1	0	0	0	0	0	0	0	1	0
(28)	1 s	0	0	0	0	0	0	0	0	1	0	0	0
$(2,18)$		1	0	0	0	0	0	1	0	0	0	0	1
$\left(1_{3} 17\right)$			1	0	0	1	0	1	1	0	0	0	1
$\left(1_{1} 15\right)$			0	1	0	0	0	0	0	1	1	1	0
$(2,12)$			0	0	0	0	0	0	0	0	1	0	0
$\left(1_{2} 1_{4}\right)$			0	0	0	0	0	0	0	1	0	1	0
$\left(1_{1} 1_{2} 1_{7}\right)$			0	0	1	0	0	1	0	0	0	0	1
$\left(1_{4} 18\right)$			1	0	0	0	1	0	1	0	0	0	1
$\left(1,171_{8}\right)$				1	0	0	0	0	0	1	1	1	0
$\left(2_{3}\right)$					0	0	0	0	0	0	0	1	0
$(2,14)$					0	0	0	0	0	0	1	0	0
($11_{5} 1_{7}$)					0	1	0	0	1	0	0	0	1
$\left(1_{1} 1_{3} 1_{8}\right)$					0	0	0	1	0	0	0	0	1
$\left(1_{2} 1_{6}\right)$					0	0	0		0	1	0	1	0
$(3,17)$					0	0	0		0	0	0	0	0
$\left(1_{1} 1_{2} 1_{3}\right)$					0	0	0		0	0	0	0	0
$\left(1_{6} 1_{8}\right)$					0	0	1		1	0	0	0	0
$\left(2_{2} 1_{8}\right)$					1	0	0			0	0	0	0
$\left(1_{2} 2_{7}\right)$						0	0			0	0	1	0
$\left(1_{2} 28\right)$						0	0			1	0	0	0
$\left(21_{6}\right)$						0	0				1	0	0
$\left(1_{3} 1_{5}\right)$						0	0				0	1	0
$\left(1_{1} 1_{4} 1_{7}\right)$						0	0				0	0	1
$\left(4_{1}\right)$						0	0				0	0	0
$\left(2{ }_{7}{ }_{8}\right.$)						1	0				0	0	0
$(2,27)$							0				0	0	0
$(2,28)$							0				1	0	0
(24)							0					0	0
($2_{1} 1_{2} 1_{8}$)							0					0	0
$\left(1_{2} 1_{3} 1_{7}\right)$							0					0	0
$\left(1_{1} 1_{2} 15\right)$							0					0	0
$\left(1,171_{8}\right)$							0					1	0
$\left(1_{1} 11_{5} 1_{8}\right)$							0						1
$\left(3_{2}\right)$							0						
$\left(3_{8}\right)$							1						
$\left(3_{1} 1_{3}\right)$													
$\left(21_{3} 1_{7}\right)$													
$\left(1_{1} 1_{3} 1_{4}\right)$													
$\left(1_{1} 1_{6} 1_{7}\right)$													
$\left(1_{4} 1_{6}\right)$													
$\begin{aligned} & \left(1_{1} 1_{2} 1_{7} 1_{8}\right) \\ & \left(1_{2} 1_{4} 1_{8}\right) \end{aligned}$													

Table 4. (continued)

	$\left(1_{8}\right) \times\left(1_{8}\right)$	$\left(2_{1}\right)$	$\left(1_{4}\right)$	$\left(1_{1} 1_{7}\right)$	$\left(2_{2}\right)$	$\left(2_{7}\right)$	$\left(2_{8}\right)$	$\left(1_{1} 1_{3}\right)$	$\left(1_{6}\right)$
$\left(2_{1} 2_{2}\right)$		$\left(1_{2} 1_{8}\right)$	$\left(2_{1} 1_{8}\right)$	$\left(1_{3} 1_{7}\right)$	$\left(1_{1} 1_{5}\right)$				
$\left(1_{1} 2_{2} 1_{7}\right)$									
$\left(2_{2} 1_{4}\right)$									
$\left(1_{1} 1_{7}\right)$									
$\left(1_{4} 2_{8}\right)$									

	$\left(1_{4}\right) \times\left(1_{4}\right)$	$(1$		(28)	$\left(1_{1} 1_{3}\right)$		$\left(1_{2} 1_{8}\right)$	$\left(1_{1} 1_{7}\right) \times$	$\left(1_{1} 1_{7}\right)$	(22)	(28)	$\left(1_{1} 1_{3}\right)$	(16)	$\left(1_{2} 1_{8}\right)$
(0)	$1{ }_{\text {s }}$	0	0	0	0	0	0		$1{ }_{\text {s }}$	0	0	0	0	0
$\left(1_{2}\right)$	$1{ }_{\text {a }}$	0	0	0	1	1	0		2 a	0	0	0	0	1
$\left(1_{8}\right)$	0	1	0	0	0	0	1		0	0	0	1	1	0
$\left(2{ }_{1}\right)$	$1_{\text {s }}$	0	0	0	1	0	0		1 s	0	0	0	0	1
$\left(1_{4}\right)$	1 s	0	1	1	1	1	0		2 s	0	0	0	0	2
$\left(1_{1} 1_{7}\right)$	0	2	0	0	0	0	2		0	1	1	2	2	0
$\left(1_{1} 1_{3}\right)$	$1{ }_{\text {a }}$	0	1	0	2	1	0		2 a	0	0	0	0	3
(16)	1 a	0	0	1	1	2	0		2 a	0	0	0	0	2
$\left(1_{2} 1_{8}\right)$	0	2	0	0	0	0	3		0	1	1	3	2	0
$\left(2_{2}\right)$	$1{ }_{\text {s }}$	0	1	0	1	0	0		1 s	0	0	0	0	1
(27)	$1{ }_{\text {s }}$	0	0	0	0	1	0		1 s	0	0	0	0	1
(28)	15	0	0	1	0	1	0		1 s	0	0	0	0	1
$\left(21_{8}\right)$	0	1	0	0	0	0	1		0	1	1	2	1	0
$\left(1_{3} 1_{7}\right)$	0	2	0	0	0	0	2		0	1	1	2	2	0
($1_{1} 1_{5}$)	$1{ }_{\text {s }}$	0	1	1	2	1	0		$2 \mathrm{a}, \mathrm{s}$	0	0	0	0	3
$\left(2_{1} 1_{2}\right)$	0	0	0	0	1	0	0		1_{a}	0	0	0	0	1
$\left(1_{2} 1_{4}\right)$	1 a	0	1	0	2	1	0		1_{a}	0	0	0	0	2
$\left(1_{1} 1_{2} 1_{7}\right)$	0	1	0	0	0	0	2		0	2	0	3	1	0
$\left(141_{8}\right)$	0	1	0	0	0	0	2		0	0	1	1	2	0
$\left(11_{7} 1_{8}\right)$	$1{ }_{\text {a }}$	0	0	1	1	2	0		2, ${ }_{\text {, }}$	0	0	0	0	3
(23)	1 s	0	0	0	1	0	0		0	0	0	0	0	1
$\left(21_{4}\right)$	0	0	1	0	1	0	0		1 s	0	0	0	0	1
(1, 1_{7})	0	1	0	0	0	0	1		0	0	1	0	2	0
$\left(1_{1} 1_{3} 1_{8}\right)$	0	1	0	0	0	0	2		0	1	1	2	1	0
$\left(1_{2} 1_{6}\right)$	1 s	0	1	1	1	1	0		1_{s}	0	0	0	0	2
($3_{1} 1_{7}$)	0	0	0	0	0	0	0		0	0	0	1	0	0
$\left(1_{1} 1_{2} 1_{3}\right)$	0	0	1	0	1	0	0		0	0	0	0	0	1
($1_{6} 18$)	0	0	0	0	0	0	1		0	0	1	0	1	0
$\left(21_{8}\right)$	0	0	0	0	0	0	1		0	1	0	1	0	0
$\left(1_{2} 2_{7}\right)$	0	0	0	0	0	1	0		1_{a}	0	0	0	0	1
$\left(1_{2} 2_{8}\right)$	0	0	0	1	0	1	0		0	0	0	0	0	1
(211_{6})	0	0	0	0	1	0	0		1_{a}	0	0	0	0	1
$\left(1_{3} 15\right)$	$1{ }_{\text {a }}$	0	0	0	1	1	0		0	0	0	0	0	1
($11_{1} 1_{7}$)	0	1	0	0	0	0	1		0	0	0	1	1	0

Table 4. (continued)

	$\left(1_{4}\right) \times\left(1_{4}\right)$	$\left(1_{1} 1_{7}\right)$	$\left(2_{2}\right)$	$\left(2_{8}\right)$	$\left(1_{1} 1_{3}\right)$	$\left(1_{6}\right)$	$\left(1_{2} 1_{8}\right)$	$\left(1_{1} 1_{7}\right) \times\left(1_{1} 1_{7}\right)$	$\left(2_{2}\right)$	$\left(2_{8}\right)$	$\left(1_{1} 1_{3}\right)$

where the D_{8} Kronecker products are given in table 4. These were calculated using Young's tableau (see Fischler 1981). Table 4 is arranged in the same way as table 3 and each section of the table corresponds to a product by the irrep indicated in the upper left-hand corner. After subtracting the irreps belonging to $\left[1_{7}\right],[0]$ and $\left[1_{1}\right]$, we find

$$
\begin{equation*}
\left[2_{1}\right]+\left[1_{2}\right] \rightarrow\left(2_{8}\right)_{s}+\left(2_{2}\right)_{s}+2 \times\left(1_{2} 1_{8}\right)+\left(1_{1} 1_{3}\right)_{\mathbf{a}}+\left(1_{6}\right)_{\mathbf{a}}+\left(1_{1} 1_{7}\right)+\left(1_{4}\right)_{s}+\left(1_{8}\right)+\left(1_{2}\right)_{\mathbf{a}}+(0)_{\mathbf{s}} . \tag{9}
\end{equation*}
$$

From the symmetry property and using the rule that the sum of E_{8} irreps of length N branches into all D_{8} irreps of the same length, we get

$$
\begin{align*}
& {\left[2_{1}\right] \rightarrow\left(2_{8}\right)+\left(1_{2} 1_{8}\right)+\left(2_{2}\right)+\left(1_{4}\right)+(0)+\ldots} \tag{10}\\
& {\left[1_{2}\right] \rightarrow\left(1_{2} 1_{8}\right)+\left(1_{1} 1_{3}\right)+\left(1_{6}\right)+\left(1_{2}\right)+\ldots} \tag{11}
\end{align*}
$$

Using the law of dimensions, the branching rule is immediately completed. The result is found in table 5, where the branching multiplicities of the D_{8} irreps labelling the rows are the entries of a given column labelled by an E_{8} irrep.

In order to illustrate the added complexities of obtaining branching rules for higher-dimensional irreps, we give a second example. If we assume that we have found the branching rules for all irreps of length less than 14 and also for [$1_{1} 1_{2}$] of length 14 , from table $3(b)$ we see that the Kronecker product [$\left.1_{7}\right] \times\left[1_{7}\right]$ contains only two irreps for which the branching rules are unknown. These are $[27]$ and [1_{6}]. In
the Kronecker product [$\left.1_{8}\right] \times\left[1_{1}\right]$, the unknown branching rules are for $\left[1_{1} 1_{8}\right]$ and [16]. After taking the respective products in D_{8}, using table 4, and subtracting the irreps for which the branching rules have already been calculated (table 5), we get

$$
\begin{align*}
{\left[2_{7}\right]+\left[1_{6}\right] \rightarrow } & \left(2_{1} 2_{7}\right)+\left(2_{4}\right)+\left(4_{1}\right)+2 \times\left(3_{1} 1_{7}\right) \\
& +2 \times\left(1_{1} 1_{4} 1_{7}\right)+\left(1_{2} 2_{7}\right)+\left(1_{3} 1_{5}\right)+\left(2_{1} 1_{6}\right)+\left(1_{1} 1_{3} 1_{8}\right)+\left(1_{5} 1_{7}\right) \\
& +\left(1_{2} 1_{6}\right)+2 \times\left(2_{1} 1_{4}\right)+\left(1_{1} 1_{7} 1_{8}\right)+2 \times\left(1_{1} 1_{2} 1_{7}\right)+2 \times\left(1_{4} 1_{8}\right) \\
& +\left(2_{1} 1_{2}\right)+\left(1_{2} 1_{4}\right)+\left(2_{1} 1_{8}\right)+\left(1_{3} 1_{7}\right)+\left(2_{8}\right)+\left(2_{2}\right)+2 \times\left(1_{1} 1_{5}\right) \\
& +2 \times\left(1_{2} 1_{8}\right)+\left(1_{1} 1_{3}\right)+\left(1_{6}\right)+\left(1_{1} 1_{7}\right)+\left(1_{4}\right)+\left(1_{8}\right)+\left(1_{2}\right)+(0) \tag{12}\\
{\left[1_{1} 1_{8}\right]+\left[1_{6}\right] \rightarrow } & \left(1_{2} 1_{3} 1_{7}\right)+\left(2_{1} 2_{8}\right)+\left(2_{7} 1_{8}\right)+\left(2_{1} 1_{2} 1_{8}\right)+\left(1_{3} 1_{7} 1_{8}\right)+\left(1_{1} 1_{5} 1_{8}\right)+\left(1_{1} 1_{2} 1_{5}\right) \\
& +\left(3_{1} 1_{7}\right)+2 \times\left(1_{1} 1_{4} 1_{7}\right)+2 \times\left(1_{2} 2_{7}\right)+\left(1_{1} 1_{2} 1_{3}\right) \\
& +2 \times\left(1_{3} 1_{5}\right)+2 \times\left(2_{1} 1_{6}\right)+3 \times\left(1_{1} 1_{3} 1_{8}\right)+2 \times\left(1_{5} 1_{7}\right) \\
& +\left(1_{2} 1_{6}\right)+2 \times\left(2_{1} 1_{4}\right)+\left(2_{3}\right)+3 \times\left(1_{1} 1_{7} 1_{8}\right)+3 \times\left(1_{1} 1_{2} 1_{7}\right)+\left(1_{4} 1_{8}\right) \\
& +2 \times\left(2_{1} 1_{2}\right)+2 \times\left(1_{2} 1_{4}\right)+3 \times\left(2_{1} 1_{8}\right)+3 \times\left(1_{3} 1_{7}\right)+\left(2_{7}\right)+3 \times\left(1_{1} 1_{5}\right) \\
& +2 \times\left(1_{2} 1_{8}\right)+3 \times\left(1_{1} 1_{3}\right)+2 \times\left(1_{6}\right)+3 \times\left(1_{1} 1_{7}\right)+\left(2_{1}\right)+\left(1_{4}\right)+\left(1_{2}\right) . \tag{13}
\end{align*}
$$

All the irreps of length 16 in equation (12) or (13) must belong to [27] or [$1_{1} 1_{8}$] respectively. All those of length 14 which are not in [$1_{1} 1_{2}$] appear only once in [16] and the rest are in $\left[2_{7}\right]$ and $\left[1_{1} 1_{8}\right]$. Furthermore, all symmetric irreps are in $\left[2_{7}\right]$ and the antisymmetric ones in [16]. Also, every irrep which appears in (12) but not in (13) must belong to [27]. Also each irrep which is in (13) but not in (12) must be in [$1_{1} 1_{8}$]. Therefore

$$
\begin{align*}
& {\left[2_{7}\right] \rightarrow\left(4_{1}\right)+}\left(2_{4}\right)+\left(2_{1} 2_{7}\right)+\left(3_{1} 1_{7}\right)+\left(1_{1} 1_{4} 1_{7}\right)+\left(1_{2} 1_{6}\right) \\
&+\left(2_{8}\right)+\left(2_{2}\right)+(0)+\left(1_{4} 1_{8}\right)+\left(1_{8}\right)+\ldots \tag{14}\\
& {\left[1_{6}\right] \rightarrow\left(3_{1} 1_{7}\right)+}\left(1_{1} 1_{4} 1_{7}\right)+\left(1_{2} 2_{7}\right)+\left(1_{3} 1_{5}\right) \\
&+\left(2_{1} 1_{6}\right)+\left(1_{1} 1_{7} 1_{8}\right)+\left(2_{1} 1_{2}\right)+\left(1_{2} 1_{4}\right)+\left(1_{1} 1_{3}\right)+\left(1_{2}\right)+\ldots \tag{15}\\
& {\left[1_{1} 1_{8}\right] \rightarrow\left(1_{2} 1_{3} 1_{7}\right)+\left(2_{1} 2_{8}\right)+\left(2_{7} 1_{8}\right)+\left(2_{1} 1_{2} 1_{8}\right)+\left(1_{3} 1_{7} 1_{8}\right)+\left(1_{1} 1_{5} 1_{8}\right)+\left(1_{1} 1_{2} 1_{5}\right)+\left(1_{1} 1_{4} 1_{7}\right) } \\
&+\left(1_{2} 2_{7}\right)+\left(1_{1} 1_{2} 1_{3}\right)+\left(1_{3} 1_{5}\right)+\left(2_{1} 1_{6}\right)+2 \times\left(1_{1} 1_{3} 1_{8}\right)+\left(1_{5} 1_{7}\right)+\left(1_{2} 1_{6}\right) \\
&+\left(2_{3}\right)+2 \times\left(1_{1} 1_{7} 1_{8}\right)+\left(1_{1} 1_{2} 1_{7}\right)+\left(2_{1} 1_{2}\right)+\left(1_{2} 1_{4}\right) \\
&+2 \times\left(2_{1} 1_{8}\right)+2 \times\left(1_{3} 1_{7}\right)+\left(2_{7}\right)+\left(1_{1} 1_{5}\right)+2 \times\left(1_{1} 1_{3}\right) \\
&+\left(1_{6}\right)+2 \times\left(1_{1} 1_{7}\right)+\left(2_{1}\right)+\ldots \tag{16}
\end{align*}
$$

The sums of the dimensions of the irreps missing in (14), (15) and (16) are respectively 554712 for $\left[2_{7}\right]$ and $\left[1_{1} 1_{8}\right]$ and 1469572 for [1_{6}]. By matching those dimensions with the dimensions of the irreps remaining in (12) and (13), we can find a unique solution for the branching rule. The additional branching rules listed in table 5 are derived similarly. This table which gives the branching rules of 14 irrep of E_{8} increases by 5 the number given by King and Al-Qubanchi (1981). Using the techniques outlined above, one can enlarge the table. It is the tabulation of the D_{8} Kronecker products that presents the greatest difficulty.

Table 5. Branching rules for $\mathrm{E}_{8} \rightarrow \mathrm{D}_{8}$.

$L[\phi]$		$\begin{aligned} & 2 \\ & {\left[1_{1}\right]} \end{aligned}$	$\begin{aligned} & 4 \\ & {\left[1_{7}\right]} \end{aligned}$	$\begin{aligned} & 6 \\ & {\left[1_{2}\right]} \end{aligned}$	$\begin{aligned} & 8 \\ & {\left[2_{1}\right]} \end{aligned}$	$\begin{aligned} & 8 \\ & {\left[1_{8}\right]} \end{aligned}$	$\begin{aligned} & 10 \\ & {\left[1_{1} 1_{7}\right.} \end{aligned}$	$\begin{aligned} & 12 \\ & {\left[1_{3}\right]} \end{aligned}$	$\begin{aligned} & 14 \\ & {\left[1_{1} 1_{2}\right]} \end{aligned}$	$\begin{aligned} & 14 \\ & {\left[1_{6}\right]} \end{aligned}$	$\begin{aligned} & 16 \\ & {[27]} \end{aligned}$	$\begin{aligned} & 16 \\ & {\left[1_{1} 1_{8}\right]} \end{aligned}$	$\begin{gathered} 18 \\ {\left[3_{1}\right]} \end{gathered}$		$\begin{aligned} & 20 \\ & {\left[2_{1} 1_{7}\right]} \end{aligned}$
0	(0)	0	0	0	1	0	0	0	0	0	1	0	0	0	0
2		1	0	1	0	0	1	0	1	1	0	0	1	1	0
	(18)	1	0	0	1	0	1	0	1	0	1	0	1	1	0
			1	0	0	1	0	1	0	0	0	1	0	0	1
	(14)		1	0	1	0	1	1	1	0	1	1	0	1	2
	($1_{1} 1_{7}$)		1	1	0	1	1	1	1	1	0	2	0	1	2
	$\left(1_{1} 1_{3}\right)$			1	0	1	1	1	1	1	0	2	0	2	1
	(16)			1	0	0	1	0	1	1	0	1	1	2	1
	($1_{2} 1_{8}$)			1	1	0	1	1	2	1	1	1	1	3	2
					1	0	0	1	1	0	1	0	0	1	1
	(27)				0	1	0	1	0	0	0	1	0	0	0
	(28)				1	0	0	0	1	0	1	0	1	1	2
	$(2,18)$				0	1	1	1	0	1	0	2	0	1	1
	$\left(1_{3} 1_{7}\right)$				0	1	1	1	1	1	0	2	0	2	2
	$\left(1_{1} 1_{5}\right)$				0	1	1	1	1	1	1	2	0	2	2
10	$\left(2_{1} 1_{2}\right)$						1	0	0	1	0	1	0	1	0
	$\left(1_{2} 1_{4}\right)$						1	0	1	1	0	1	1	3	1
	$\left(1_{1} 1_{2} 1_{7}\right)$						1	1	1	1	1	2	0	3	1
	$\left(1_{4} 1_{8}\right)$						1	0	1	0	1	1	1	2	2
	$\left(1,171_{8}\right)$						1	1	1	1	0	2	0	2	2
12	(23)							1	0	0	0	1	0	0	1
	$(2,14)$							1	0	1	1	1	0	1	1
	($11_{5} 7_{7}$)							1	0	1	0	1	0	1	1
	$\left(1_{1} 1_{3} 1_{8}\right)$							1	1	1	0	2	0	2	2
	$\left(1_{2} 1_{6}\right)$							1	1	0	1	1	0	2	2
14	$\left(31_{7}\right)$								0	1	1	0	0	1	0
	($1_{1} 1_{2} 1_{3}$)								1	0	0	1	0	1	1
	$\left(1_{6} 18\right)$								1	0	0	0	0	1	1
	$\left(2_{2} 1_{8}\right)$								1	0	0	0	1	1	1
	$\left(1_{2} 2_{7}\right)$								0	1	0	1	0	1	0
	$\left(1_{2} 28\right)$								1	0	0	0	1	1	1
	$(2,16)$								0	1	0	1	0	2	0
	$(1,15)$								0	1	0	1	0	1	1
	($11_{1} 1_{7}$)								0	1	1	1	0	2	1
	$\left(4_{1}\right)$										1	0	0	0	0
	$(2,18)$										0	1	0	0	0
	$(2,27)$										1	0	0	1	0
	$(2,28)$										0	1	0	0	1
	(24)										1	0	0	0	1
	($211_{2} 1_{8}$)										0	1	0	1	1
	$\left(1_{2} 1_{3} 1_{7}\right)$										0	1	0	1	1
	($11_{1} 1_{5}$)										0	1	0	1	1
	($1{ }_{3} 11_{1} 1_{8}$)										0	1	0	1	1
	$\left(1_{1} 1_{5} 1_{8}\right)$										0	1	0	1	1

Table 5. (continued)

$L[\phi]$		$\begin{aligned} & 2 \\ & {\left[1_{1}\right]} \end{aligned}$	$\begin{aligned} & 4 \\ & {\left[1_{7}\right]} \end{aligned}$	$\begin{aligned} & 6 \\ & {\left[1_{2}\right]} \end{aligned}$	$\begin{aligned} & 8 \\ & {\left[2_{1}\right]} \end{aligned}$	$\begin{aligned} & 8 \\ & {\left[1_{8}\right]} \end{aligned}$	$\begin{array}{cc} 10 & 12 \\ {\left[1_{1} 1_{7}\right]} & {\left[1_{3}\right]} \end{array}$	$\begin{array}{lc} 14 & 14 \\ {\left[1_{1} 1_{2}\right]\left[1_{6}\right]} \end{array}$	$\begin{aligned} & 16 \\ & {\left[2_{7}\right]} \end{aligned}$	$\begin{aligned} & 16 \\ & {\left[1_{1} 1_{8}\right]} \end{aligned}$	$\begin{aligned} & 18 \\ & {\left[3_{1}\right]} \end{aligned}$	1	$\begin{aligned} & 20 \\ & {\left[2_{1} 1_{7}\right]} \end{aligned}$
18	$\left(3_{2}\right)$										1	0	0
	$\left(3{ }_{8}\right)$										1	0	0
	(311_{3})										0	1	0
	$\left(2_{1} 1_{3} 1_{7}\right)$										0	1	0
	$\left(1_{1} 1_{3} 1_{4}\right)$										0	1	0
	$\left(1_{1} 1_{6} 1_{7}\right)$										0	1	0
	($14_{4} 16$)										0	1	0
	($1_{1} 1_{2} 1_{7} 1_{8}$)										0	1	1
	$\left(1_{2} 1_{4} 1_{8}\right)$										0	1	1
20	$\left(2,2{ }_{2}\right)$												1
	$\left(1_{1} 2_{2} 1_{7}\right)$												1
	$\left(21_{4}\right)$												1
	$\left(11_{7} 2_{8}\right)$												1
	(1428)												1

Acknowledgment

The author would like to thank Dr G Feldman for suggesting the idea and for helpful discussions.

References

Bars I and Günaydin M 1980 Phys. Rev. Lett. 45 859-62
Gürsey F and Ramond P 1976 Phys. Lett. 60B 177-80
Gürsey F and Sikivie P 1976 Phys. Rev. Lett. 36 775-8
Feldman G, Fulton T and Matthews P T 1982 The subalgebras of Lie algebras, JHU Preprint HET 8209
Fischler M 1981 J. Math. Phys. 22 637-48
Freudenthal H 1954 Indag. Math. 16 487-91

- 1956 Indag. Math. 18 511-4

King R C and Al-Qubanchi A H A 1981 J. Phys. A: Math. Gen. 14 51-75
McKay W G and Patera J 1981 Tables of dimensions, indices and branching rules for representations of simple Lie algebras (New York: Marcel Dekker)
Wybourne B G 1979 Austr. J. Phys. 32 417-26
Wybourne B G and Bowick M J 1977 Austr. J. Phys. 30 259-86

[^0]: † Supported in part by the National Science Foundation.

[^1]: \dagger In fact only 'even' representations of D_{8} will appear, where we define an even (odd) irrep of D_{8} according to whether $n_{1}+2 n_{2} \ldots+8 n_{8}$ is even (odd) where the D_{8} representation is ($n_{1}, n_{2}, \ldots, n_{8}$). This follows from an examination of the basic weights of E_{8} in the $\boldsymbol{\lambda}_{i}$ basis. The sum of the coefficients of each of these weights is always even.

