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Branching rules for irreducible representations of Eg
into Dg¥
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Abstract. The branching rules for irreducible representations of Eg into Dg are calculated
using the knowledge of the Kronecker products for those two algebras. Tables of
Kronecker products for both Eg and Dg algebras are also included.

1. Introduction

In the past few years, several models for grand unified theories based on exceptional
Lie groups have been proposed (Giirsey and Ramond 1976, Giirsey and Sikivie 1976,
Bars and Giinaydin 1980). It has thus become necessary to study different properties
of these exceptional algebras. Wybourne and Bowick (1977) and later Wybourne
(1979) have developed a technique for calculating Kronecker products and branching
rules for all exceptional algebras. However, the branching rules for the Dg subalgebra
of Eg were not included. These are important, since the Eg weights can be written
in the same orthogonal basis as the Dg weights, and this basis has proved to be useful,
in particular when one wants to study the non-regular subalgebras of exceptional Lie
algebras (Feldman et a/ 1982). Some of the branching rules have been given by King
and Al-Qubanchi (1981) using the knowledge of weight multiplicities. Making use
of the Kronecker products in Eg and Dg, we have found King’s results and extended
the table of Eg—Dg branching rules to include all Eg irreducible representations
(irreps) of dimension less than 76 271 625; this includes all irreps of length < 18 and
one of length 20. The length of a representation is defined below. Our method is
discussed in § 2 together with some examples. Tables 1-4 list the Eg and Dgirreducible
representations and the Kronecker products which are required for the main results
which are presented in table 5.

2. Eg to D3 branching rules

A weight vector @' of an irreducible representation (irrep) is equivalent to another
weight w if it can be expressed as @’ = S, where S, are elements of the Weyl group
and a are the roots of the algebra (King and Al-Qubanchi 1981). In an orthogonal
basis, the roots of Dy are

A, £A, ij=1,2,...,8 i)
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3422 G Bélanger
where A, + A, =8, The action of the Weyl reflections on an arbitrary weight w, where
w =23, wA, is given by
SA,vA,w =w_(wi—wj)(Ai_/\j) (1)
SM“,w=w—(w,-+w,-)(/l,+A,). (2)

We can write the weights of Eg irreps in the basis used for Dg. The non-zero weights
of the adjoint representation (i.e. the roots) are then

j:AI‘iA,]‘ l.,j=1,2,...,8 l?ﬁ']

8 (3)
Z aiA,
i=1

[T

where ¢; = £1 and the number of negative o, in the sum is odd. The Weyl reflections
are given by (1) and (2) together with

1 8 1 8
Sison® =w “(_ Z Uf“’i)(‘ Z Ukwk>- 4)
2= 245

Note that two equivalent weights have the same length.

We label the irreps by a set of eight integers (ay, ..., ag) as given in McKay and
Patera (1981). To simplify the notation, we shall write only the non-zero a’s with a
subscript to indicate their position. For example, (20010000) = (2,1,4). Also, to avoid
confusion, the Eg irreps will be enclosed in square brackets, [ ], and the Dy irreps in
round ones, ( ).

The length of a representation L{¢] is defined as the square of the length of the
highest weight. In the orthonormal basis it is simple to find the length of any
representation. lf a; are simple roots of Eg and are expressed in the A; basis as in
figure 1, then the highest weights #; of the basic irreps [1;] satisfy the relation
2m; - a,)/(af) =§,. For example, we find w2 =A;+A,—2Az and therefore L[1,]=6.
The lengths and dimensions of Eg and Ds irreps required in this study are given in
tables 1 and 2 (see also Freudenthal 1954, 1956). If we apply the transformation S,
on the respective maximal weights of the Eg irreps of length N, we obtain all the Dg
weights of length N. We will therefore use the following rule.

8
o O’:’« Ghh egsheh wzgﬁ«s %Ak gzheh ja%gk/

oy = Ak

Figure 1. Dynkin diagram for E4. The simple roots a, are expressed in the A; basis.

The direct sum of all Eg irreps of length N branches to allt Dg irreps of length N
plus some irreps of smaller length. Furthermore, each of these irreps of length N
occurs only once in this sum. We may justify this by noting that all the weights of
length N which are highest weights of Dg irreps are equivalent to the highest weight
of some Ejg irreps. Therefore these weights will have multiplicity one.

¥ In fact only ‘even’ representations of Dy will appear, where we define an even (odd) irrep of Dg according
to whether n, +2n,...+8ng is even (odd) where the D representation is (ny, n,,. .., ng). This follows

from an examination of the basic weights of Eg in the A; basis. The sum of the coefficients of each of these
weights is always even.



Branching rules for irreps of Eg into Dy 3423

Table 1. Eg irreducible representations.

Label Lig] Dimension

[1,] 2 248
{151 4 3875
[1,] 6 30380
[2,] 8 27 000
[1g) 8 147250
[1:15] 10 779 247
[15] 12 2450240
[1,15] 14 4 096 000
[16] 14 6 696 000
[24] 16 4 881384
[1,1g] 16 26411008
[3,] 18 1763125
[1,14] 18 76271625
[2,15] 20 70 680 000
[14] 20 146325270

Table 2. Dy irreducible representations.

Label L{o] Dimension Label Lio] Dimension
(0) 0 1 (1525) 14 595 595
(1) 2 120 2,16) 14 850 850
(1g) 2 128 (1515) 14 1336608
(2y) 4 135 (1,1414) 14 2036736
(14) 4 1820 (4,) 16 3740
(1,149) 4 1920 (241g) 16 439296
(1,13) 6 7020 (2,24) 16 700 128
(1) 6 8008 (24) 16 771120
(151g) 6 13312 (2,1,14) 16 898 560
(25) 8 5304 (1,1314) 16 3294720
(27 8 6435 (1,1,51%) 16 3686400
(2,1g) 8 15360 (15151p) 16 4 084 080
(1519) 8 56320 (1,151g) 16 4264 960
(1,15) 8 60 060 (37) 18 129 675
2,15 10 8925 (3g) 18 183 040
(1514) 10 141372 (3;13) 18 255255
(1;1,14) 10 141440 (2y1314) 18 4523904
(1415) 10 161280 (1,151,) 18 4972 500
(1;151g) 10 162 162 (1,1615) 18 6223360
(23) 12 89 760 (141¢) 18 6 683 040
(2114) 12 176 800 (1,1,151g) 18 10 649 600
(1514) 12 326 144 (1,1415) 18 11197 440
(1,151g) 12 670208 2,24) 20 260 832
(1,1¢) 12 716 040 (1,2,14) 20 4426240
3,19) 14 87 040 (2514) 20 4514400
(1,1,13) 14 344 064 (1,142g) 20 5940480
(1g1g) 14 465920 (142g) 20 6077 500

(2;1¢) 14 524 160
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In general, if we can resolve the Kronecker products for both the algebra H and
its subalgebra h, we can determine the branching rules H - A. In the case of Esg,
however, when we take the Kronecker products of representations for which the
branching rules are known, it is usually true that we can deduce directly only the
branching rules for pairs of additional Eg irreps. More information can be obtained
by comparing the results from two different Kronecker products. To determine the
branching rules completely, it is necessary to equate the dimensions of the Eg irrep
with the sum of the dimensions of Dy irreps. The method is best illustrated by a few
examples. From table 2, we see that if we require that the Dy irreps into which [1,]
([14]) branches be of length <2 (<4) we will get

[11]- (1) + (1) (5)
[17]-> (1119) +(14) + (24). (6)

In table 3 the Kronecker products for some Ej irreps are listed. These results have
been taken from Wybourne (1979). Table 3(a) gives the results of multiplying [1;]
by the irreps which label the columns. The entries in the table give the multiplicity
of each irrep (labelled by the rows) into which the product decomposes. Table 3(5)
gives the same information for [1,]. A Kronecker square like [1;]%[1,] can be
separated into a symmetric and an antisymmetric part and this is indicated in the
tables by an s or a subscript. For example, the Kronecker square of the lowest Eg
irrep is

[L]x{1:]={[2:]+[1,]+[0T}s + ([12]+[11]a. (7
Using equation (5), we can also write
(1% [1]={(12) + (1)} x{(12) +(1s)}

={(25) +2 X (14) +2 X (0) +(22) + (21)}s

+((1e) +2 X (12) + (1115))a +2 X (1115) + 2 X (1117) + 2 X (1g) (8)

Table 3. Eg Kronecker products.

(a) (6)

[LLiIx [1] {1] [12] [2:1 [16] (17]x (1] [1] [24]
[0} 1, 0 0 0 0 1 0 0
[1,] 1, 1 1 1 0 1. 1 0
{19 1 1 1 0 1 1, 1 1
[1,] 1, 1 1 1 1 1, 2 1
[2,] 1 0 1 1 0 15 1 1
[1g] 1 1 0 1 1, 1 1
[1,1/] 1 1 1 1 1, 2 1
[1,] 1 0 1 1 1 1
[1,15] 1 1 0 0 1 1
[16] 0 1 1a 1 0
[(24] 0 0 1, 0 0
[1,1g] 0 1 1 1
[3.] 1 0 0
[1,15] 1 0
[2,15] 1
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Table 4. Dg Kronecker products.
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Table 4. (continued)

(I)x (1) (Lg) (29 (1) (1115) (1413) (Le) (121g) (23) (28) (2118) (1319) (1,15} (2;12)

(32) 1

_

-

&

—

&
cCoocoocOo~,OO

[

2% (21 (1o (Lily) (415 (1) (12ly) (22) (24)

0) 1 0 0 0 0 0 0 0
(12) 1. 0 0 1 0 0 0 0
(1g) 0 0 1 0 0 0 0 0
(2y) 1 0 0 0 0 0 1 0
(14) 0 1 0 1 0 0 0 0
(119) 0 0 1 0 0 1 0 0

113) 0 1 0 2 0 1 0

6) 0 0 0 0 1 0 0 0
(1,1g) 0 0 1 0 0 1 0 0
(2,) 1 0 0 1 0 0 1 0
24) 0 0 0 0 0 0 0 0
(2g) 0 0 0 0 0 0 0 1
(2:1g) 0 0 1 0 0 1 0 0
(1515) 0 0 0 0 0 1 0 0
(1;15) 0 1 0 0 1 0 0 0
(2115) 1. 0 0 1 0 0 1 0
(1214) 0 0 0 1 0 0 0 0
(1;1,15) 0 0 1 0 0 1 0 0
(141g) 0 0 0 0 0 0 0 0
(1:151g) 0 0 0 0 1 0 0 1
(25) 0 0 0 0 0 0 1 0
(2,14) 0 1 0 1 0 0 0 0
(1515) 0 0 0 0 0 0 0
(11131g) 0 0 0 0 1 0 0
(1,1g) 0 0 0 0 0 0 0
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Branching rules for irreps of Eg into Dy

Table 4. (continued)

OO0 OC OO oo O

O OO0 OO0 OO0 OO OO SO Cc OO O -

OCOoOO0ODDOOCOOC OO OO0 O —

OO D OO OOC [eNeNeNo ol olole ool OO

— — e o~~~ — o~ —_ —_
i ~ 0~ o 0 ot s ~ 0 [ %0
s T v o — v vt = ) P el ] PO Y N T
~ M g 00 I~ 0 O VNt 0 o~ W N N~ L B T A ST R o o S 3 N N
— e e o N O v = O Ot e e P IR e i e e B Ban] O3 N o— o
- O N N e e e = g = N o P TR R ] - =N et
0 o= N v o O] T e A o\ I o IR o I oV I o [ T IE o I e NN B o — O] —

(1,1g) (2,1g) (1315) (1,15)

(1113) (1¢)

(g (119) (23) (290 (29)

(21)

(1g)x (1)

1,19

(1)
(1g)
(2y)
(1)

(0)




G Bélanger

3428

Table 4. (continued)
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Branching rules for irreps of Eg into Dy

(continued)

Table 4.

(1,15) (211g) (1514) (1415)

(1113) (16)

(2¢)

(24)

(1115) (22)

(14)

(20

(1g)x (1g)

(Lily)x (1117) (22) (2g) (1113) (1) (121g)

(1) x (14) (1117) (22) (25) (1115) (1) (121g)

(0)
(22)
(24)
(28)
(211g)
(114)

23,5

(111s)
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NEZNIIE NN



3430 G Bélanger

Table 4. (continued)

(1) x (15) (1115 (22) (2g) (11130 (1) (121g)  (1115)% (14115) (22) (2g) (1;13) (1g) (121g)

(4y) 0 0 0 0 0 0 0 0 0 0 0 0
(241g) 0 0 0 0 0 0 0 1 0 1 0
(2:27) 0 0 0 0 0 0 1 0 0 0 0 0
(212g) 0 0 0 0 0 0 0 0 0 0 1
24 1, O 0 0 0 0 o 0 0 0 0
(21151y) 0 0 0 0 0 1 0 1 0 0
(1,1519) 0 0 0 0 1 i 0 1 0 0
(111,19) 1 0 1 0 0 0 0 0 0 1
(15151,) o1 0 1 0 o 0 0 0 1
(1:1s1g) 0 0 0 0 1 0 1 0 1 0
(32) 0 0 0 0 0 0 0 0 0 0
(3g) 0 0 0 0 0 0 0 0 0 0
(3;113) 0 0 0 0 0 0 0 0 0 0
(2:1319) 0 0 0 0 0 0 0 1 0 0
(1,151,) 0 0 1 0 0 0 0 0 0
(1;1617) 0 0 0 0 0 0 1 0
(1s1e) 0 0 1 0 0 0 9
(1,151515) 0 0 0 0 0 1
(1,141g) 0 0 1 0 0

(2125) 0 0 0 0

(1,2,19) 0 0 1 0

(2,1,) 1 0 0

(111728) 1 1

(142g) 1

where the Dg Kronecker products are given in table 4. These were calculated using
Young’s tableau (see Fischler 1981). Table 4 is arranged in the same way as table 3
and each section of the table corresponds to a product by the irrep indicated in the

upper left-hand corner. After subtracting the irreps belonging to [1-], [0] and {1,],
we find

(21]+[12]2 (28)s +(22)s +2 X (1o1) + (1113)a+ (T6)a+ (1117) + (1a)s + (18) + (12)a + (0)s.
(9)

From the symmetry property and using the rule that the sum of Eg irreps of length
N branches into all Dy irreps of the same length, we get

[2:]>(28) + (1215) +(22) + (1) + (0) +. ... (10)
[12]- (La1g) + (L 13) + (1) + (1) +. ... an

Using the law of dimensions, the branching rule is immediately completed. The result
is found in table 5, where the branching multiplicities of the Dy irreps labelling the
rows are the entries of a given column labelled by an Eg irrep.

In order to illustrate the added complexities of obtaining branching rules for
higher-dimensional irreps, we give a second example. If we assume that we have
found the branching rules for all irreps of length less than 14 and also for [1,1,] of
length 14, from table 3(b) we see that the Kronecker product {1,]%[1;] contains only
two irreps for which the branching rules are unknown. These are [2,] and [14]. In
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the Kronecker product [1g]x[1;], the unknown branching rules are for [1;1g] and
[1¢). After taking the respective products in Dg, using table 4, and subtracting the
irreps for which the branching rules have already been calculated (table 5), we get

[27]+[16]> 2127)+ (24) +(41) +2x(3,15)
+2x(111417) + (1227) + (1516) + (21 16) + (11 1515) + (1515)
+(1216) +2x(2:1)+(1;1715) +2 x (1:1217) + 2 X (141¢)
+(2:1)+(1,1)+(2:19) +(1317) + Re) + (22) +2 % (1, 15)
+2x(11g)+ (11 13) + (1) + (1117)+ (1) + (1) +(12) +(0) (12)
[(Li1g]+ 161> (121317) +(2128) + (2718) + (21 1218) + (13171g) + (11 151g) + (111215)
+(3117)+2x(1;1417) +2 % (1229) +(111,13)
+2x (131} +2%(2:16) +3 % (111515) +2 x (1515)
+(1516) +2 X (2114 +(23)+3x(1;1,1g) +3 x (131,170 +(1415)
+2X(2112)+2x(1214)+3 %X (211g) +3 X (1319) +(27) +3x (1,15)
+2%(1,1g) +3x (1113) + 2 x (1e) +3 X (111,) +(21) + (1) +(12). (13)

All the irreps of length 16 in equation (12) or (13) must belong to [2] or [1,1g]
respectively. All those of length 14 which are not in [1,1,] appear only once in [1¢]
and the rest are in {2;] and [1,15]. Furthermore, all symmetric irreps are in [2,] and
the antisymmetric ones in [1¢]. Also, every irrep which appears in (12) but not in
(13) must belong to [2,]. Also each irrep which is in (13) but not in (12) must be in
[1,1g). Therefore

[27]2(41)+(24) +(2127) + (3117 + (111417) + (12 16)

+(28) +(2)+(0) + (141g) + (1)} +. .. (14)
[16]=> (3117) +(111417) + (1527) + (1515)
+(2116) +(111519) + 211) + (121 + (L L3) + (1) +. ... (15)

[1;15]> (1215319) + (2128) + (251g) + (21 1518) + (131518) + (1, 1510) + (111,15) + (1,1415)
+(1227)+(111213) + (131s) +(2116) + 2 X (1, 1518) + (1515) + (1,1¢)
+(23)+2x(1;1719) +(1;121) +(2:1,) +(1,14)
+2x{(2;1)+2x (131D + (2 +(1;15)+2 % (1:13)
+(1e)+2x(111)+ 2D+, ... (16)

The sums of the dimensions of the irreps missing in (14), (15) and (16) are respectively
554712 for [2;7] and [1,1g] and 1469572 for [1¢). By matching those dimensions with
the dimensions of the irreps remaining in (12) and (13), we can find a unique solution
for the branching rule. The additional branching rules listed in table 5 are derived
similarly. This table which gives the branching rules of 14 irrep of Eg increases by 5
the number given by King and Al-Qubanchi (1981). Using the techniques outlined
above, one can enlarge the table. It is the tabulation of the Dg Kronecker products
that presents the greatest difficulty.



12 14 14 16 16 18 18 20
(1] [17] [12] [2.] [1s] [141,]015] [Li12]{16] [24] [141s] [34] [1215] [2:15]
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Table 5. Branching rules for Eg > Dyg.
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Table 5. (continued)

2 4 6 8 8 10 12 14 14 16 16 18 18 20

Ll¢] (1] (171 [12] [21] [1] (14150 015) [1h12) (16l [24] (lale] [34] [1215]([2:14]
18 (32) 1 0 0
(38) 1 0 0
(3113) 0 1 0
(2:1515) 0 1 0
(1;151y) 0 1 0
(111615) 0 1 0
(1416) 0 1 0
(1;15151g) 0 1 1
(1,1415) 0 1 1
20 (242,) 1
(1,2:14) 1
(2214) 1
(111525) 1
(1424) 1
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